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XX. On the Theory of the Elliptic Transcendents. By James Ivory, A.M.
F.R.S. Instit. Reg. Sc. Paris, et Soc. Reg. Sc. Gottin., Corresp.

Read June 9, 1831.

THE branch of the integral calculus which treats of elliptic transcendents
originated in the researches of FaeNani, an Italian geometer of eminence. He
discovered that two arcs of the periphery of a given ellipse may be determined
in many ways, so that their difference shall be equal to an assignable straight
line; and he proved that any arc of the lemniscata, like that of a circle, may
be multiplied any number of times, or may be subdivided into any number of
equal parts, by finite algebraic equations. These are particular results; and
it was the discoveries of EvLEr that enabled geometers to advance to the inves-
tigation of the general properties of the elliptic functions. An integral in
finite terms deduced by that geometer from an equation between the diffe-
rentials of two similar transcendent quantities not separately integrable, led
immediately to an algebraic equation between the amplitudes of three elliptic
functions, of which one is the sum, or the difference, of the other two. This
sort of integrals, therefore, could now be added or subtracted in a manner
analogous to circular arcs, or logarithms ; the amplitude of the sum, or of the
difference, being expressed algebraically by means of the amplitudes of the
quantities added or subtracted. What Faenant had accomplished with respect
to the arcs of the lemniscata, which are expressed by a particular elliptic inte-
gral, EvLer extended to all transcendents of the same class. To multiply a
function of this kind, or to subdivide it into equal parts, was reduced to
solving an algebraic equation. In general, all the properties of the elliptic
transcendents, in which the modulus remains unchanged, are deducible from
the discoveries of EvLer. Lanpen enlarged our knowledge of this kind of
functions, and made a useful addition to analysis, by showing that the arcs of
the hyperbola may be reduced, by a proper transformation, to those of the
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350 MR. IVORY ON THE THEORY OF THE ELLIPTIC TRANSCENDENTS.

ellipse. Every part of analysis is indebted to Laeranck, who enriched this
particular branch with a general method for changing an elliptic function into
another having a different modulus, a process which greatly facilitates the
numerical calculation of this class of integrals. An elliptic function lies
between an arc of the circle on one hand, and a logarithm on the other,
approaching indefinitely to the first when the modulus is diminished to zero,
and to the second when the modulus is augmented to unit, its other limit.
By repeatedly applying the transformation of LAGRANGE, we may compute
either a scale of decreasing moduli reducing the integral to a circular arc, or
a scale of increasing moduli bringing it continually nearer to a logarithm.
The approximation is very elegant and simple, and attains the end proposed
with great rapidity.

The discoveries that have been mentioned occurred in the general cultivation
of analysis ; but LEcENDRE has bestowed much of his attention and study upon
this particular branch of the integral calculus. He distributed the elliptic
functions in distinct classes, and reduced them to a regular theory. In
a Mémoire sur les Transcendantes Elliptiques, published in 1793, and in
his Exercices de Calcul Intégral, which appeared in 1817, he has developed
many of their properties entirely new; investigated the easiest methods of
approximating to their values; computed numerical tables to facilitate their
application ; and exemplified their use in some interesting problems of geo-
metry and mechanics. In a publication so late as 1825, the author, returning
to the same subject, has rendered his theory still more perfect, and made many
additions to it which further researches had suggested. In particular we find
a new method of making an elliptic function approach as near as we piease to
a circular arc, or to a logarithm, by a scale of reduction very different from
that of which LaeranGe is the author, the only one before known. This step
in advance would unavoidably have conducted to a more extensive theory of
this kind of integrals, which, nearly about the same time, was being discovered
by the researches of other geometers.

M. ApEL of Christiana, and M. Jacosr of Konigsberg, entirely changed the
aspect of this branch of analysis by the extent and importance of their disco-
veries. The first of these geometers, whom, to the great loss of science, a pre-
mature death cut off in the beginning of a career of the highest expectations,
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happily conceived the idea of expressing the amplitude of an elliptic function
in terms of the function itself. By this procedure the sines and cosines of the
amplitudes become periodical quantities like the sines and cosines of circular
arcs; and analogy immediately points out many new and useful properties
which it would be difficult to deduce by any other mode of investigation. This
new way of considering the subject struck out by M. ABEL, not only disclosed
to him some interesting and original views, but it conducted him to the general
and recondite theorems which, without his knowledge, had been previously
discovered by the geometer of Konigsberg. M. Jacosi, following in his
researches a different method from M. ABEL, proved that an elliptic function
may be transformed innumerable ways into another similar function to which
it bears constantly the same proportion. In the solution of this problem the
modulus and the amplitude sought are deduced from the like given quantities,

" by equations which depend upon the division into an odd number of equal
parts of the definite integral, having its amplitude equal to 90°% and, as any
odd number may be chosen at pleasure, the number of transformations is
unlimited. In consequence of this discovery, an elliptic function can have its
modulus augmented or diminished according to an infinite number of different
scales. The new process for effecting the same reduction discovered by
LeceNDRE in 1825, is only the most simple case of the extensive theorem of
M. Jacosr; and, although the older transformation of LAGRANGE is no part of
the same theorem, it bears to it a close resemblance in every respect. Such is
the principal addition made to this branch of analysis by M. Jacosr; but the
new methods of investigation introduced by him and M. ABEL, open a wide
field of collateral research, which probably will long continue to furnish matter
for exercising the ingenuity of mathematicians.

But it seldom happens that an inventor arrives by the shortest road at the
results which he has created, or explains them in the simplest manner. The
demonstrations of M. Jacos1 require long and complicated calculations; and
it can hardly be said that the train of deduction leads naturally to the truths
which are proved, or presents all the conclusions which the theory embraces
in a connected point of view. The theorem does not comprehend the trans-
formation of Lacrancg, which must be separately demonstrated. This is an
imperfection of no great moment; but it is always satisfactory to contemplate
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352 MR. IVORY ON THE THEORY OF THE ELLIPTIC TRANSCENDENTS.

a theory in its full extent, and to deduce all the connected truths from the
same principles. On a careful examination it will be found that the sines or
cosines of the amplitudes used in the transformations are analogous to the sines
or cosines of two circular arcs, one of which is a multiple of the other ; inso-
much that the former quantities are changed into the latter when the modulus
is supposed to vanish in the algebraic expressions. We may therefore transfer
to the elliptic transcendent the same methods of investigation that succeed in
the circle. When this procedure is followed, there is no need to distinguish
between an odd and an even number ; the demonstrations are shortened ; and
the difficulties are mostly removed by the close analogy between the two cases.
It is in this point of view that the subject is treated in this paper, in which
it is proposed to demonstrate the principal theorems without going into the
detail of the applications.
1. Elliptic functions of the first kind are of this form *, viz.
/‘? deo
V1 —Fsin®¢’

o]

v dy
o VM1—=IRsin*y’

the arcs ¢ and 4 being the amplitudes, and the quantities & and 4, which are
always less than unit, the moduli of the functions. For the sake of abridging,
I shall denote the foregoing integrals by K (¢) and H (), the prefixes K and
H having reference to the moduli £ and 2 ; and, for the definite integral

between the amplitudes 0 and —"'2-,' I shall use indiscriminately either K (%)
and H (—;—) , or, more simply, K and H.

The general equation to be investigated is the following,

4/1 —/ﬂsm 4 BfVl—k251n9 (l)

B being a constant quantity equal to the first ratio of the nascent arcs 4 and ¢.

* In what follows, the terms  elliptic functions’ and ¢ elliptic transcendents’ are to be understood as
applying to those of the first kind only, which alone are treated of.
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If we admit that this is a possible equation, and suppose that when + is succes-
sively equal to the arcs of the series,

T -
,O) g 2 g

¢ attains the respective values,
0, Ay, A9y Ay, &C. 5
we shall have,
H=pK(®),2H=8K (®,),3H=K (%), &c.;
and consequently,
K@) =2K(®), K@)=3K(@®),&e.
Thus the arcs Ay, A;, &c. are the amplitudes of the multiples of the function
K (1), which itself remains indeterminate. ~We may therefore suppose

T
355 &ec.,

pxXK@®) =K (—;r-), p representing any integer number; and, in conse-
quence, we shall have

1 2
K=K K=K ...K@,)= %K.

Any proposed number being assumed for p, we may determine the amplitudes
Als Ay, 23, &e. by the theory for the multiplication and subdivision of elliptic
functions : but as the equations to be solved are complicated and impracticable,
the arcs A, A, &c. may be treated as known quantities without any attempt to
compute them.

An elliptic function becomes equal to the arc of its amplitude, when the

modulus vanishes : and in this case the arcs Aj, Ay, A3, &c. are obtained by the

. 1
subdivision of the quadrant of the circle, and are respectively equal to 7 g-,

(/3 k3
Having made these observations, we shall for the present dismiss all consi-
deration of the equation to be demonstrated, and turn our attention to inves-
tigate two variable arcs + and ¢, such that the first shall have the successive

values,

2
p

|9

0} b 2 X Zér_) 3 _:2‘-" &C.

2z2

[
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when the second becomes respectively equal to the several known amplitudes,
0, 2y, Ay Ag, &e.
2. As we shall have occasion to refer to the formulas for the addition and
subtraction of elliptic functions, it will be convenient to premise them.
Let @ and b represent any two amplitudes, and put
K (a) + K (3) =K (5
K@ —K(@®)=K():

then, according to the formulas of EvLER ¥*,

sinecosb A/1 — k®sin?bh +cosasind /1 — I?sin’a

sin § = : —
1 — /?sin® asin® b

. sinacosba/1 — E2sin?b — cosasinb /1 — I®sina
sin ¢ = s .
1 — k®sin® @ sin®b

From these we immediately deduce,

. . __ _sin®a —sin® b A
SIS SN0 = " " Fe g sinth  ° ( )

It may be observed that if @ = Am, b= Au; then s = Anpn, 6 = Ap—n: for
it is obvious that
Kan) + K@) = (m+n) K@) =K (Anin)
K (An) — K (4a) = (m — ) K () = K (tn—)
3. In order to avail ourselves of the analogy between the elliptic functions

and the arcs of a circle, we must take that view of the matter first suggested
by M. ABeL. Let

f4/1 /.fgsm2 =K (9);

then, as » is a variable quantity depending upon the amplitude ¢, reciprocally
this latter quantity will depend upon the first ; which dependance we shall
express in this manner,

¢ = amplitude of v == A u,

sin @ =sin A .

# Traité des Fonctions Elliptiques, tom. i. p. 22.
+ This equation is called by M. ABEL “ la propriété fondamentale.”
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For the sake of abridging, let » = % K ; 50 that Ay, A, A, &c. Will be the
respective amplitudes of w, 2w, 3w, &c.; and A, = amplitude of p v = amp. of
K = 90°; and Az, = amp. of 2p » = amp. of 2 K = 180°. From the nature of
the integral, it follows that when « receives an addition equal to 2p«» or 2 K,
the amplitude of » will be increased by 180°.

To the indeterminate quantity » let there be added the several even multi-
ples of » less than 2 pw; and let us consider the sines of the amplitudes of the
functions so formed, viz.

sinAw, sinA (v +2w), sinA(x+4a), ....sinA(x+2pw—2w):

in this series, if we substitute in place of , the successive quantities » -+ 2w,
u+ 4w, u-+ 6w, &c., the same sines will constantly recur in periodical order,
abstracting from the change of sign when an amplitude becomes greater than
180°, or than a multiple of 180°. Thus, if we put » 4 2w in place of », the
second term of the foregoing series will stand first, and the last term will be
sin A (v + 2pw) = — sin A (u).  In like manner, if 4 4 » be substituted for
u, the third term of the series will stand first, and the two last terms will be
—sinAw, —sinA (x4 2); and so on.
Let us now put

y=sinAs X sinA (3a) X sinA(5@)....X sinA(2pw— )

or, which is the same thing,

y=sini; X sind; X sini;.... X sindy,_;;

and further, let us assume,
% sinAu XsinA(@+20) XsinA (4 4w).... XsinA @+ 2pw —Qw). (B)
Y
In this expression, if we substitute for u, the several odd multiples of » in suc-
cession, viz.
w, 3w, bw, 7w, &c.

it follows, from what has been said, that the products in the numerator will
always be the same, and equal to the denominator, but that their signs will
change alternately as the successive quantities are substituted. Thus, when
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any odd multiple (274 1) is substituted for « in the expression (B), the
value of y is always -+ 1 or — 1, according as (27 -+ 1) » holds an odd or an
even rank in the series of the odd multiples of w.

On the other hand, when u is zero, or equal to 2 » » any even multiple of «,
we shall have y = 0, one of the factors of the numerator necessarily vanishing;
for in a sequence of the even multiples of w, of which the number is p, there
must be one equal to 2paw, or to a multiple of 2pw; and therefore when
% = 2nw, one of the factors must be the sine of an amplitude equal to 180° or
to a multiple of 180°. '

Further, let » — 2 be substituted for # in the expression (B), = being less
than «; then,

__sinA(w—=z)sinA(Bw—3)....sinA(2pw—w—2)

= 7 M
Now, in the numerator, the partial products, of the first and last factors, of the
second and last but one, and so on, are as follows:

SinA (w—2)sinA 2pw — o — 2) =sinA (» — 2) sin A (v + 2),
sinA(Bw—2)SinA (2pw — 3w —2) =sin A (8o — 2)sin A (8a -+ 2), &e.
to which we must add the single factor sin A (p # — %), when p is an odd num-
ber. All the partial products, it will be observed, have the same value whe-
ther z be positive or negative; and they are all greatest, when z = 0, as will
readily appear from what is proved in § 2. Wherefore y has the same value
and the same sign, when = is at equal distances from the limits 0 and 2»; and
it attains its greatest magnitude, equal to 1, when # = w. And, if we substi-
tute (27 + 1)w — =z for u, this substitution will not change the foregoing
factors, but only their order, and the sign of their product, which sign, while
» is contained between the limits 27w and 2n » + 2 w, will be 4 or —, accord-
ing as (27 4+ 1) » holds an odd or an even rank in the series of the odd mul-

tiples of . '

We may now conclude, from what has been proved, that y, in the expression

(B), represents the sine of an arc.+}, which increases from zero with the elliptic
function %, and coincides with the successive terms of the series,

0, 7, 2%, 37, &e. ad infinitum,
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at the same time that u attains the values,

0, w, 2w, 3w, &c. ad infinitum,

or, when the amplitude of » becomes equal to the several known arcs,
0, A, Ay A3, &e. ad infinitum :
and further, that there is but one value of y, or of sin +, between the two con-

secutive terms m X — and (m+1) X Z., for any given value of » between the

limits m w and (m + 1) w, or for any given amphtude between the arcs A, and
Am 4 1-

4. In what has been proved, p may be either an odd or an even number ;
but we must now distinguish between the two cases, in like manner as it is
necessary to do when we investigate the sine of a multiple of a circular arc.
Representing the amplitude of « by ¢, we shall have, » = K (¢), and sin¢
=sinAw. When p is odd, there will be an even number of factors after the
first in the numerator of the expression of y or sin+}; and any one of these,
as sin A (v 4+ 2 n w), will have another, namely, sin A (¥ + 2 pw — 2n o)
=sin A (2ne — ), answering to it; and the product of this pair of factors,
viz. sin A (w + 2n®) X sinA (2ne — %), will be found by the formula (A) of
§ 2, observing that sine =sin A (2nw) = sinks,, sind =sinAu =sing, sins
=sinA (2nw -+ u), sinc=sin(2ne —u):
thus we have,

sinA(u+2nw)sinA{u+2po— 2n0) =

Iin2 mn2
sin®a,, — sin®g
72 cin? T2 A
1—/* sin Ay, SIN° O

Wherefore, by taking in all the factors and writing = for sin ¢, we shall obtain,

sin = = sin® A, — 2° sin® Ay — 22 sinAp —1 — 22
v 1—=F@sin®A 1 —2fsin®a, "1 — Bsin?ap -1

The expression of y, viz.
y =sina; .sina;.sina;...sinAgp 1,
may be written in this form,
y =sin2}A, . sin?x; . sin2A; . . . . sin? Ay 1,

omitting the factor sina,= 1: wherefore, if we assume,
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8= sin® A, . sin® A . sin*Ag. .. SIN* A, _ 4
" sin® Ay . sin® Ag.Lsin® Ay L L. sin A, o)
we shall have,
p being an odd number,

22 39 1 22
. ~ sin® g ~ sin® M T sin® Ap—1 c
Sy =0B63. e, : cee . . 2
V=8 1 —/A*2%sin®A, 1 — 2% 2%sin® A 1 —/2sin®Ap—1 @)

When p is an even number, if we leave out the first factor in the numerator
of the expression of y or sin+}, there will remain an odd number of factors,
that which occupies the middle place, being sin A (x + pw): and any factor,
as sin A (v + 2nw), between the first and the middle one, will have another,
viz. sin A (w + 2pw — 2n ), corresponding to it after the middle one; and
the product of this pair of factors will be obtained as before, viz.

sin®a, , — sin®¢

sinA (u+2n0)sinA(u+2pw—2n0) = .

P The
1 —/°sin®a,  sin®p

With regard to the middle factor, we shall have, in the formulas of § 2,
sinag = sin A (pw) = sin90°, sinb = sinAu =sin @, sins =sinA (u + pa);
and

. _ cos ¢

sinA (u—+4pw)= WA py=rrr
Wherefore, by proceeding as before, we shall have,

p being an even number,
2 2

—_ 1 — __E___ 1 — _z‘_m 1 — ___.j.g___.
Bz V1 —2° sin® A, sin®a, sin2iy — 2
Vi—ie 1= Fesna T=Fesnts,  1—Fesnp_z O

sin< =

8= sin® A, . sin®A,. sin®Ag. . . sin® Ay — 2
Sin?A; . SIn*Ag. SIN%Ag. .. SIN% Ay — 1

In both the formulas (2) and (3), it is obvious that 8 is the quotient of the
product of the sines of all the even amplitudes, 2y, 2,, &c. between the limits
0 and 180°, divided by the product of the sines of all the odd amplitudes,
A1, Ag, &c. contained between the same limits. The general expression of ,
common to the two cases, is therefore as follows,

SiNAg.sinA;.sinAg. . .sinAg, o o
=sinA,.sinA3.sinA5....-sinAgp__l' (4)
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In the formula (2) let P and R stand for the products of the binomials in
the numerator and denominator; then,

Bz P

sin«L: R H

and,

coszy = 2 —lsze P
The numerator of this expression is a rational function of 22, and it will vanish
whenever cos?+) = 0, or sin2+) =1, that is, when =22 is equal to sin?ag, 41,
2n 4 1 being any odd number less than 2 p. Suppose that 2z - 1is any odd
number less than p, the numerator of the value of cos? + will be divisible by
(1 - ——Eg-——~), and also by (I - ~———zf——-——~), and as these binomials arc

sin® Agn.+ 1 sin®Agp —2n —1

equal, it will be divisible by their product (1 — and, p being itself

sin® A2n+ )
an odd number, to the double divisors there must be added the single one

(1 - Sinzf}\ ) =1 — 22 The numerator is therefore divisible by the product,
p ’

— 2 —_ __L 2.
(1 z) (1 stA) ( sxn")\) (1 ) Sing}\p—2) .

and, as the two expressions have the same absolute term and the same dimen-
sions, they must be identical. Wherefore we have,

p being an odd number,

32 %2 22
JI== 1 —Gen, s P W 5
cosy = — 22 . - il .
V= 1 —/222%sin® Ay 1 — k*2%sin® A 1 —/2®sin®ay —1 (5)

In like manner, if P and R represent the rational binomial products in the
numerator and denominator of the formula (3), we shall have

Bzv1—2 P

Sll’l = H
¢ V11— X R

and

cos? ) = (1—4k zQ)(lI{i—‘I-Czﬁz)z2 lg z — 22) Pz

Proceeding as before, it will appear that the numerator of this expression is
MDCCCXXXI. 3aA
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divisible by the double divisor (1 m) 2n <4 1 being any odd num-

ber less than p; and in this case when p is an even number, all the divisors
are double. Wherefore the product

2% \2 ) 22 2
(1 - sinQ}»l) : (1 sm““») ( sm“)»s ot (1 T sin® Ap — 1)

will divide the numerator of the value of cos?+ ; and it will be identical to it,
because both the expressions have the same dimensions. Thus we obtain,
p being an even number,

1 22 1 2 ) o
coS = __S]_rf_}\}: . sing.)\3 e Sin‘z'?»p -1 (©)
VT2 1 —kz2sin®a 1= sin hp—_o

From the equations (2) and (5) we deduce,

2? 22 22

tan -y = Bz 1—sin‘z)\a.l_sinﬁ}%“”l—sin‘lAp—l
V 1 — a2 ¢ 1 22 1 22 1 22
Tsinta, T T osin®ag sin® A — 2
but it will readily appear that
1 sin® ¢ tan® ¢
T osinta,, | tanthy,
sin?¢ tan* ¢
T sin®Ag, 4 T tan® Ay, 4

wherefore we obtain,
p being an odd number,

tan? ¢ tan® ¢ - tan? ¢
~ tan® A T tan?a T tan®a, —1
n+} =@ tan 2, do. . 7
tan & px tan® ¢ tan® ¢ tan® ¢ (/)
T tan® A, tan® Ay T tan®ap — 2

And in a similar manner we deduce from the equations (3) and (6),
p being an even number,

tan® ¢ . tan® ¢ tan® ¢
tan  tan® T tan®a T tan® Ay —
tan ) = A . tanLAQ. tdL 4....~—-———————;‘"—-2. (8)
tan? ¢ tan® ¢ tan® ¢ tan® ¢
T tan®x; © tan®lg  tan®ig T tan®ap —1

The formulas (2), (56), (7), in which p is an odd number, are those used in
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the theorems of M. Jacos1; the other three, (3), (6), and (8), have been added
here. All the formulas will be true in the circle, if we make % = 0, and derive
the arcs Ay, Ay, &c. from the subdivision of the quadrant, in like manner as

they have been obtained from the subdivision of the definite integral & (%)

The coefficient 3 is the expression of the first ratio of the nascent arcs 4 and ¢;
and it is equal to p in the circle.

All the formulas are, however, imperfect in one respect: they all suppose
that the amplitudes A;, A, &c., derived from the subdivision of the definite

integral k(—;i) , are known. By means of these amplitudes, the general solu-

tion of the problem has been deduced from a particula.r.case: but the formulas
cannot be considered as complete till all the coefficients have been expressed
in functions of the modulus %; and, with respect to this point, the researches
of analysts have not yet been entirely successful.

5. Having now investigated the relation between the arcs +) and ¢, we have
next to demonstrate that the equation (1) is true when these amplitudes are
substituted in it, and a proper value is assigned to the indeterminate modulus
h; but this requires some preparation, in order to avoid cbmplicated operations.

First, p being an odd number, we have,

B.zP V1—-22.Q,

Sin "#: R 2 R >

cos ) =

R, P, Q, represénting the rational binomial products in the denominators and
numerators of the equations (2) and (5) : we therefore obtain,

R2=(222P2 + (1 — 2?) Q2
This equation has been found on the supposition that = is less than 1; but, as
it contains no radical quantities, it will be true for all values of z. We may

. 1 . . . .
therefore substitute 4 for z; and, in the resulting equation, the symbol z will
still represent a quantity unrestricted in its value. Now, the substitution of

1 . : .
#s for z being made, we shall obtain,

R2—-pB2m222P2= (1 — k222 R,
3A2
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in which expression R and P denote the same functions of = as before, and the
values of the new symbols %z and R’ are as follows,

h= K’sin*d, . sintay . sintay. .. sinta, o,

R = (1 — k222sin?n)) (1 — K2 22sin?n,) . .. (1 — K2 =2sin2 ), _ o).
We thus have

JRE— R =, /T=2.Q

JU—FRIP =, /T—Fz.R. }

(©)

Secondly, when pis an even number, R, P, Q will stand for the rational
binomial products in the denominators and numerators of the equations (3)

and (6) : thus
= FEy1=2 P -1 9Q
sin+ = WA Ry i cos = Ji—Fs R°
consequently
I-ER)R2=3=:2(1—=:2) P24 Q2

And if in this equation we substitute ;- in place of =, we shall obtain this

result,
(1 —R2)R2=p42:2(1 — 2) P24 R”?

R and P representing the same functions of < as before, and the new symbols
h and R' standing for these values,

b=k . sina;.sintay . sintay .. sinta,
R = (1 — K2 =2sin22)) (1 — K2 22sin?h;) . . . (1 — A2 2%sin?p, _ .
From what has been proved we now have

JI-EHR -2 (=2 P =Q,
(A= k2 22) R2— (2222 (1 —z‘Z)P‘Z=‘R'}

(D)

To these formulas we must add the following principle of analysis, on which
the demonstration we have in view mainly turns. Let V and U denote rational
functions of z : we shall have this identical equation,
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from which it follows, that every double binomial factor either of V4 a U, or
\Y
*(v)
and V— a¢U have no common divisor, that every double binomial factor
of (V4 aU) X (V—aU) =V2—-42U?% is a simple binomial factor of

a. (Y
.1

6. The differential of the equation (1) may now be readily demonstrated,
supposing that 3 has the value investigated in § 4, and 4, the value assigned to
it in § 5. And first when p is an odd number, we obtain from the equation (2),

d(V-aU) d.(V+al)

—(V—=12al) o

U2—-——{ (V+al)

of V— a U, is a simple binomial factor of U2; and further, if V4 a U

. .2 P .
smx[z=@—}—§——, Fg=1=5n¢Q:

and with these values the equation (1) will become

R9 (z P) B 1

V(Re—ﬁz ZPQ) (Rz_ﬁahazzl)z — V1 ——ze.l-—/c'zz’z:

and, on account of the formulas (C),

=4 (%)
QW

Now it isevident that R+ 3.sPand R — 3.2 P, have no common divisor :
for, as R contains only the even powers of z, and z P only the odd powers, if
14 cz be a factor of R4 38.2P, 1 — ¢z will necessarily be a factor of

— B.2P. Wherefore, according to what has been proved above, every
double binomial factor of R? — (3222 P?, that is, every factor of Q, will be a
factor of the function in the numerator of the left side of the last equation. In
the very same manner it is proved that every double binomial factor of
R2 — 32 k222 P2, that is, every factor of R/, will be a factor of the same function.

= 1.
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Wherefore the numerator of the left side of the last equation is divisible by
the product Q X R’ in the denominator ; and, as both the expressions have
the same dimensions and the same absolute term, they are identical ; which
verifies the equation. Wherefore the equation (1) is demonstrated when p is
an odd number.

Secondly, when p is an even number, we have by equation (3),

and the differential of equation (1) will become by substitution,

(1 — %2 R® d V1T =22,
ds "\VI=F=.R
\/((1 — PR — a0 (1— ) P2) ((1 — BRI (1 — ) P%)

1
- 4/1-—.%2.1—/6939' ’

and, on account of the formulas (D),

(1=FR°, 21— 22,
dz V1=, R 1
Q.R _'\/1--22.1-—/6222'

It will be proved, by the like reasoning as before, that the numerator of the
left side of this equation is divisible by the product in the denominator. Now
if we perform the differentiation indicated, we shall find,

(&)
S=(1—=2224+RHYPR+z (1 —22) (1 —k2z2) Rz — "~

2

(1—=2)R2 , /3V/1 —2* )
'R

dz \WVI=—F2® 4/1——32 1—-/(‘2

and it is evident that all the rational factors of the left side of this last formula,
and consequently all the factors of Q X R', will be factors of S. By substi-
tution the differential equation (1) will now become

S
Q x B’ = 1,

which is manifestly verified : for,as Q x R' divides S, and the two expressions
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have the same dimensions and the same absolute term, they are identical.
The equation (1) is therefore demonstrated when p is an even number.
7. The transformation expressed by the equation,

n/.«/l-—lzfasmﬁz _@/‘ v’l—/ci"smgb

has now been demonstrated for any number whether odd or even, the constant
8 being determined by the formula (4), and the modulus % by the special for-
mulas in § 5, or, generally without distinguishing whether p is odd or even, by

this formula,
h=Fk. (sin sina;sina;. . .sink,, _ )2 (9)

the sines multiplied together being those of all the odd amplitudes less than
180°. The relation between the variable amplitudes +} and ¢ is expressed by
the several equations in § 4.

In order to render the solution of the problem more complete, it may be
proper to add a useful method of computing the amplitude .

In § 5 we have obtained this equation,

Rz=(B222P2 4+ (1 — 22) Q.

And, if we represent by N and M the products of the binomials in the nume-
rator and denominator of the equation (7), we shall have

__Btang N
tan Y= -
2
Let x = tan ¢, then 22 = sin%¢ = I'Ti’?ﬂ ; and, observing that
-2'2
2 1= tan® A,

=@ = v

it will readily appear that

N S M
@zP:_._ﬁ” S \/1—22-Q=__‘T,_-

1+ 29° 1+ a)?
These values being substituted in the foregoing equation, we get
M2 43222 N2 = (1 4 2)” . R2:
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And if R be transformed into a function of x2, we shall obtain
M2+ B222N2=(1+a?) (1 + 2222 (1 4 ¢2a?)2. ... (1 4 cZ_p2?)?,
the new symbol ¢,, being determined by this formula,
€2 =1 — E2sin22,,.
The last equation may be resolved into these two,
M+BaN/—=1=042/=1) QA+ ca/—=12....(1 +cur/—1)2
M-gBaNy/=1=(1—a/=1) 1= qa/—1). ... (1 /= 1)

the second of which being divided by the first, there will resuit,

I—tang /=1 __ 1—2s—1 1—-6‘2.2:'&/:-1)2 1—cpox s/ —1\2
1+tanysy/ —1 1424/ =1 \1+cas—1 14coas =1/

Now u« being an arc of a circle, we have this well known formula,

1 1 —tanu s —1
24/ =1 Xlog°(1 +tanu s/ —1)°

wherefore, if we take the logarithms of the factors of the foregoing expression,
and substitute the equivalent circular arcs, we shall obtain,

U =

p being an odd number,
v=0+20,+20,+2¢...20,,, - (10)
the arc ¢,, being determined by the equation, | ’
tan ¢;, = ¢, X tano. ’
When p is an even number, we have this equation in § 5,
(1I—=R2)R2=062:2(1—22) P24 Q%
And, using N and M to denote the products of the binomials in the numerator

and denominator of the equation (8), we have

tan ) = Btan ¢ N.

M
By the substitution of ; iirI‘.x% for z as before, it will be found that,
Gz\/l—zZ.P=M—-—: Q= M

: p T P’
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Wherefore we have,
M2 4 3222 N2 = (1 + #?)” (1 — A2 22) R?;
and by converting (1 — 4£2%2%) . R? into a function of 2%, we get
M2 43222 N2 = (1422 (1 +£22%) (1 + c,2a?)?. ... (1 + Zpa?)?,
2=1—k, c,)2=1—/ksin2n,,.
By treating this equation as before, we get

l—tangl;v:—‘l_:l—xa/_——l 1—FHa V=11 —cyes=1\2
14+tanya =1 1424/ =1 14Kz —1 1+c2xv1—1)

-----

and from this we deduce,

p being an even number,

V=040 + 0+ 0.+ 0, (11)
tan¢' = £ tan g, tang@,,= c,,tan¢.

8. In what goes before, our attention has been confined to two related
functions, which, for the sake of abridging, we have denoted by the prefixes
H and K ; but as we shall have occasion, in what follows, to compare several
functions differing from one another in their moduli and amplitudes, it will be
proper to adopt the usual and more general notation, by means of the cha-
racteristic F prefixed to the modulus and amplitude. According to this nota-
tion, the equation (1) will be thus written,

F(h4)=BF(k 0); F(he)=5F ().

The modulus 4 being given, we can compute the amplitudes, 1;, A,, &c., at
least by approximation ; and the amplitude ¢ being supposed known, the fore-
going formulas will determine the modulus 4, the multiplier 3, and the ampli-
tude 4 ; so that the function F (4, ¢) will be reduced to the similar function
F (%, ), of which the modulus % is less than the given modulus 4. And in
like manner as the three quantities &, 3, + were determined from the two
k, ¢, we can deduce, from the two %, +J, three new quantities, %, (3, 4, which

will satisfy the equations,
F (kb)) =BF(h4); Fko)= g5 X F(h4);

MDCCCXXXI, 3B
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the modulus %, being less than the modulus 2. Continuing the like operations,
we can pass along a scale of decreasing moduli, till we arrive at one which,
being as small as we please, will make the function F (%, ¢) approach to a cir-
cular arc as near as may be required.

If we wish to apply the same theorem to reduce the given function F (%, ¢)
to a logarithm, through a scale of increasing moduli, the process is not so
direct. For, in the first place, the greater modulus % is not immediately de-
ducible from the less , by means of the formulas that have been investigated;
and, in the second place, the amplitude ¢ cannot be found when + is given
without solving an equation of p dimensions. The theorem is, no doubt,
mathematically sufficient for effecting the reduction; but the operations re-
quired are practically impossible, except in a few cases when p is a small
number. But the ingenuity of M. Jacosr has provided a remedy for this in-
convenience by a new transformation, which we shall now briefly explain, as
it discloses a new set of remarkable properties of the elliptic functions.

If we put y = tan+), x =tang, h2=1— k2, k2 =1 — A2, the differential
of the equation (1) will assume this form,

dy _ Bdx .
NI+ 1+ V1+ar 1 +k7a

and, for solving this equation, we shall have by the formula (7),

p being an odd number,

2 z° 22

1— - -

=Bx X tan® a, 1 tan® a4 1 tan®Ap — 1
y=0 ol o ot

- A tan®ag T tan®ap — 2

But if this value of y solve the differential equation, it will still solve it, if we
change + % and + »? into — a2 and — y?; for it is obvious that, if the ex-
pression of y make the two sides of the equation identical in one case, it will
necessarily make them identical in the other case. Wherefore the equation

dy . Bdx
V1I—32 1 =1y V1—=a®1—=k"2%

will have for its solution.
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xi wﬂ .1‘2
1+ 14 1+ =7
=Bz X- tan® A, tan® A, tan® Ap —1
Yy —— - R o

L+ tan® Ap—1

1+ e A 1+ Ag
In this equation the values of y and x are between 0 and =+ 1, which limits
they both attain at the same time. If we make = 4 1, and attend to the
value of 3, we shall findy =+ 1. Let y =sin7, x =sins: then the inte-

gral of the differential equation will be
F (i, 7) =BF (¥, 0)

sin®¢ + sin® ¢ 14 sin? ¢
. . n® tan?® A tan®Ap —1
sing =@sines X fan 2, e —F—: (12)
s1no~1+_s_ma' 1+ sin® ¢
tan® A, tan® A tan®Ap — g

the amplitudes = and ¢ increasing together from zero, and becoming equal to
one another at 90°, and at every multiple of 90°.

A property of considerable importance in this theory, results from the com-
parison of the equations (1) and (12). Recalling the notations before used,

viz. K=F (Ic, -2"—) and H=F (h, 12'-), we obtain from what has already been
said in § 1,

pXxH=XxK:
and if we put similarly K' = F (lc’,lzr* ) and H=F (h’,g—), and observe that in

the equations (12), = and ¢ are equal to 90° at the same time, we shall have,

H =K.
By combining the two equations, we readily obtain, first,
H_1K ,__H
and secondly,
_ K _1 W, n_ K
‘3;3’—-]’, K--—;'ﬁ’ Bl—p"‘H“r (14)

For any number p, the first of the formulas (18) determines %, and the second

determines 3, when % is given. Both the formulas involve transcendent quan-

tities; they are nevertheless of great practical utility in this theory; and they
3B2
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express succinctly the conditions necessary, in order that the transformations
in the equations (1) and (12) take place. A little attention will show that the
formulas (14) and (13) are entirely similar, the quantities 8/, %/, £’ occupying
the same places in the first, that 8, %, & do in the other. From this we learn
that the equations (1) and (12) will still be true if we change (3, 4, % for
@, K, ¥, respectively. Thus we have,

F (¥, 4) =p'F (¥, ¢), (15)
the letters 4 and ¢, it need hardly be noticed, although used on a former occa-
sion, here express simply the variable amplitudes of the related functions. If

therefore we divide H = F (h’,% into p equal parts, and put w;, wmy; ps, &c.,

for the respective amplitudes of -1%- H/, 5— H, ?-?— H', &c.; we shall have by the
formulas (4) and (9),

sin,u.gsiny,;l....sin[.z.,zp__2 1
2

' . -
B = sinpsinpg...singg (16)

. 2
k= k’f(sin(blsinpus....sm‘wgp_[) "

The multipliers 3 and 8’ being similar functions, the first of the amplitudes
A, gy A5, &c., and the other of the amplitudes p;, w,, w3, &c., the equation
3B' = p, expresses a curious property of those functions.

And, in like manner, if we change 38, %, A, respectively for 8/, /', %' in the
equation (12); or, which is the same thing, if we derive an equation from (15)
in the same manner that (12) was obtained from (1), we shall get

F(/c, 7') = B'F (h, 0), 1
sin® ¢ + sin® ¢ + sin®o > ( 7)
. . tan® tan® u, tan® up —1 1
sine = ('sin o X sin;(:-2 ’ sin%‘::'-4 T sirlg)o- ’
1 + 1+

tan®p, * tan® s tan®pp — 2

Although, in the investigations of this §, we have supposed that p is an odd
number, yet it is obvious that they will succeed equally when p is an even
number, the formula (8) being used instead of (7).

The analysis by which the equation (12), of which those that follow are con-

sequences, has been deduced from the equation (1), is precisely that by which
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the expression of a circular arc is made to pass into a logarithm ; so that the
whole of this analytical theory rests on one principle, namely, the analogy
which an elliptic function bears to a circular arc and to a logarithm, which
are its extreme limits.

10. Of the transformations in the last §, the principal one is contained in
the formulas (17), which constitute what is called the second theorem of M.
Jacosr. One of its chief uses is to supply the defect of the first theorem by
furnishing a direct process for reducing an elliptic function to a logarithm,
through a scale of increasing moduli. In the function F (4, ¢), the modulus
k being given, we know %' (= o/1 — /2) named the complement of % for the
sake of abridging ; we shall therefore obtain the amplitudes w,, w,, &c., by the

subdivision of the function H = F (h’,-g—) ; we next compute the quantities

pB' and & by the formulas (16) ; and, the amplitude ¢ being given, we deduce
from the formulas (17), the amplitude =, which will satisfy the equation,

F (ko) = - F (k 9),

the modulus % of the new function being greater than 4, because the comple

ment /' is less than the complement #'. Taking now %' the complement of %,
we deduce from it, by means of the formulas (16) and (17), the three quanti-
ties 8/, k!, 7, in like manner as @', #,  were deduced from A'; and we - shall

have these equations,

F(,o)=8/Fk,7); F(h,0) = X F(k,7);

g (3’
the modulus %, being greater than %, because the complement %/ is less than
k. 'The like operations being continued, we shall at length arrive at a mo-
dulus %,, as near the limit 1 as may be required.

Another use of the second theorem, when combined with the first, is to find
any multiple of an elliptic function, or any aliquot part of it. By the first
theorem, we have

F () =F (% 0);
and by the second, making ¢ =+ in the equations (17),
Fk,2)=0F0 {);
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and, by combining the two equations, observing that 8 8' = p, we get

Fk,7) =pF (%, 9).
If p be an odd number, the amplitudes are obtained by the formulas (2) and
(17), viz.

sin® ¢ sin® ¢
. . T sina, T sin®Ap — 1
Sin 4 = [3sin - : ceee : ; ?
¥ B ¢ x 1 — /®sin® ¢ sin® A, 1—/*sin®*¢sin®*Ap —1
sin® s 14 sin®
. . tan® p, tan® up — 1
sin # = @'sin SOV e Ml
n ﬁ ¢ X sin® 1 sin®
tan® u, + e pp—2

When a multiple is required, we pass directly, by means of the two equa-
tions, from the given amplitude ¢ to » which is sought. In the case of an
aliquot part, the amplitude = being given, the solution of the second equation,
of which p is the dimensions, will determine sin +} ; and the amplitude ¢ which
is sought, will then be found by solving the first equation, which is also of p
dimensions. From the nature of the second equation, it has only one real
root, and p.— 1 impossible roots, for every real value of sin 7; and therefore

it follows from the first equation, that the amplitude ¢ of the function%F (%, 7)
admits in all of p? values, of which only p values are real quantities, and the
rest impossible.

If p be an even number, the expression of sin+} will contain radical quan-
tities, but instead of it we may take the value of tan -} in the formula (8) ; and
the two equations for the amplitudes will be,

] — tan® ¢ _ tan® ¢
tan = B t:an<p2 . tanz A tan® Ap — 2,
tan® ¢ tan® ¢ tan® ¢
Ttan®A; © T tan®ag 1= i -1
sin® sin®
sing = £ sind .1 +t‘jm2t2.... +tan2‘“7’¢‘2;
14 smixp sm“;xp 1+ sgin’lez
tan® p, tan® ug tan® up — 1

from which the same general properties may be deduced, as when p is an odd
number.
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11. We have now demonstrated, as was proposed, the principal and leading
points of this theory, for which we are indebted to M. Jacos1. For the sub-
ordinate details, and for many curious and important collateral researches that
have been suggested by the new views laid open in this branch of analysis, we
must refer to M. Jacosr's own work, to the papers of M. ABeL, and to the
writings of LEcenpre. We shall conclude this paper by applying the formulas
that have been investigated to two particular instances, taking for p the most
simple values, namely 2 and 3.

Example 1. Supposing p = 2.

By the formulas (3) and (6) we have these equations between the amplitudes
+ and ¢, x being = sin ¢,

B3

. Bz A1 —2° T sin®a,
SV ST ST T

2

wherefore
2* \2
1 —k2z2=32z2(1 —-zz) -+ (1 —m) :
and ‘
1 2
2 — . — A2 = 1,2
B — sin*Ap? sin® A, B = k2.
We now get

E?2=1 — k2; B=1+F; Sin27»1=r_*l_—-k7.
Also, by the formula (9),

. i 1~
b= R sintny = gepm = [

from which we deduce
A4+rQAQ+F) =2
The equation (1), viz.
F(h) =B F (% 9),
may now be put in one or other of these two forms,

F (ko) = 22 F (b, 4),

F(hd) = (1 + ) F (4 0):
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by the first we pass from the greater modulus % to the less 2; and by the
second, from the less modulus % to the greater %.

In the first of the two cases we must derive the amplitude +} from ¢: and,
for this purpose we immediately obtain from the formula (11),

tan ( — ¢) = &' tan ¢.
Wherefore, if
k, by by, hyy &e.
represent a series of decreasing moduli, of which the complements are,
K, W, k), Ry, &e.
the successive quantities being derived from one another by these formulas,
11—k 1—% 1—h/

hl=1+}‘/: h_l+iz”

&e. :

and, if we likewise deduce a series of amplitudes in this manner,
tan (¢ — ¢) = /A'tan ¢
tan (¢ — ) = A’ tan
tan (b, — ;) = b tan . +;, &e.

we shall have these successive transformations, by which the value of the given
function F (%, ¢) is made to approach indefinitely to the arc of a circle,

F(ke) = 2P (0,4)
F (&, 0) = 1+}l 1+th(h1,'441)
F(he) =5 - 150 Ll B (hy, 0y, &

In the second case, when we would pass from the less modulus % to the
greater %, the amplitude ¢ must be deduced from -J. For this purpose we
have \

sing _ Bz 41 —2* Bsingcosg
cosy — 1 2 — 1—pBsin’g
sin® a,
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29

2 . in .
but 8 = T3 75 Cos@sing = 3_2__; and 1 — 2sin? ¢ = cos 2 ¢ : wherefore,

sing _ sin2¢

cos¥y h+c052¢; and, sin (2¢ — ) = hsin.

Wherefore if the quantities,
hy k, Ky, Ky &e.

represent a series of increasing moduli derived. from one another by these

equations,
-k 1—£

| | B—
=iz W=15p

-

r__l;fil .
ky "1+k1’&c”

—

and further, if the amplitudes <, ¢, ¢, ¢,, &c. be deduced from the formulas,
sin (29 — +) = hsin,
sin (2¢, — ¢) = ksin ¢,
sin (2 ¢, — ¢;) = Ky sin g, : &e.
we shall have these transformations in which the successive moduli tend to
the limit 1,
F (h, ")) = (1 + K) F (%, ¢),
F ) =0 +E) A+ &) F (k;0),
Fd)=Q0+#) 1+ %)Q+E5)F (k o,), &e.

Example 2. Supposing p = 3.
By the formulas (2) and (5) we have these equations between the amplitudes

Y and ¢,

22 '%.2
. - Bs (1 "~ sin® Ag) _ 5 1= sin® A,
sin ) = 1 — A%=sin? A, 2 COS"J/'—'\/I_z *1—/A%z%sin®), "
wherefore,

(1—Fa2sinn)?= @22 (1 — 2 ) 4+ (1 — ) (1= =)™
2 SIHQAQ SIDQAI .
from which we get
2
2 A — —— — 32
2 k2sin?a, = S, +1 - 33

MDCCCXXXI. 3¢
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. 1 2 26
4y, = —
ket sint by = sin® A + sin® A, sin® Ay’
__sin®a,
g= sin® A}
g P

Now, observing that

Kt sint A,

smPh, — simta Ve obtain by equating the values of

1 1—p83\2 _ 1 2(1—p)
(sin92 A + 2 ) T sint A + sin® A, °
from which we deduce

2
g= sina,

1.

1
sin A

In order to simplify the formulas I shall put

. . 1 2 . . .
and sin?A, = Bsin% A, = —i—fg: and, having substituted these values in the

1=l+s: then 3 =1 4 2¢,

first of the foregoing equations, we shall get,
428 —2K2:—k2=0.

This equation may be resolved by the usual method into the two following
quadratic factors,

B =412 k2,
24+ (14 /1—ge— /P + 42— Fe=0,
2+ (0 —T-get+ 3 /F+4-2—3¢=0,

The second of these equations has two impossible roots : the first hus two real
roots, one being negative and foreign to the question, and the other positive,
which solves the problem. Thus ¢ has only one value, which may be con-
structed geometrically, but the algebraic expression of it need not be written
down.

We have next to derive the amplitude + from ¢. We readily obtain from
the foregoing biquadratic equation,

_ 0+ P—9
i = 14 2¢ ?
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and hence,
1 — AZsinZh, = ¢, =%

And the formula (10) will determine « when ¢ is given.
Finally, therefore, we have these determinations,

=1 +‘29,h =(~l—€?);, tan (ﬁ_gﬁ) =ctano;

1
F (k,0) = WXF(ka'ﬁb);

the modulus % being less than 43. By repeating the like operations, a suc-
cession of moduli rapidly decreasing may be formed, by means of which the
given elliptic function will' be reduced to a circular arc as near as may he
required.

3¢ 2



